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Abstract— This paper presents an adaptive actuator allo-
cation scheme that is fault-tolerant with respect to actuator
faults and loss of effectiveness. The main idea is to use an
ad-hoc online parameter estimator coupled with an allocation
algorithm to perform on-line control reconfiguration whenever
necessary. A preliminary algorithm is proposed for nonlinear
discrete-time systems. Its main properties are summarized
in the disturbance-free case and its effectiveness shown by
means of two numerical examples, the second one dealing with
driving/braking loss of effectiveness due to tire/surface contact
force variations in 4WS4WD terrestrial vehicles.

I. INTRODUCTION

Actuator redundancy is an important issue to deal with in

increasing the fault-tolerant properties of many real plants.

For example, it is a very common matter in (autonomous)

vehicle applications due to safety reasons. A traditional way

to handle overactuated systems (i.e. systems with physical

actuator redundancy) is to resort to optimal control design

methods [1]. Such an approach achieves both regulation and

control distribution amongst the actuators at the same time.

A different approach consists of using a simpler control

law that specifies only the total control effort that has to

be produced and separately solving the so-called Control

Allocation Problem (CAP) i.e. the one of optimally dis-

tributing the desired total control effort over the available

actuators. Due to its relevance, especially in flight control

systems, CAP has been deeply investigated in the last decade

and several methods have been proposed: Daisy Chaining

[2], Direct Control Allocation [3]-[4], Convex Optimization

Based algorithms [5]-[11] and PseudoInverse-Redistribution

(PIR) methods [12]-[13].

In this paper the presence of redundant actuators is

exploited to develop effective fault-tolerant reconfigurable

control strategies. To this end, the so-called Reconfigurable

Control Allocation (RCA) problem [14]-[16] is revisited. The

key idea is depicted in Fig. 1 where supposedly the control

law has been designed on the basis of a virtual system with

a minimal number of inputs v(t), fully equivalent to the

physical inputs u(t) in generating a desired total control

effort. Then, an allocation unit distributes at each time t
the total control effort v(t) on the physical actuators u(t)
based on some meaningful criterion. Then, in the case of

actuator fault or loss of effectiveness, control reconfiguration
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Fig. 1. Control structure with allocation and control performed separately

is possible in many cases by simply modifying the distri-

bution of the total control effort v(t) to the remaining no-

faulty actuators in u(t). This does not perturb in principle

the closed-loop system dynamics because there are several

ways to distribute the control amongst actuators, all of which

equivalent in terms of closed-loop properties. Unlike other

works on the topic, here the algorithm is not assumed to

know in advance the occurrence of a fault. On the contrary,

an adaptive mechanism is used to estimate possible loss

of effectiveness and make possible the on-line computation

of the allocation rules by solving a standard constrained

QP problem. Two final examples are presented to show the

effectiveness of the proposed strategies. Other examples have

been reported in [18].

II. PROBLEM STATEMENT

A. Control Allocation Problem

Let us consider a plant whose dynamics is described by the

following nonlinear discrete-time state space equation

x(t + 1) = a(x) + Bu(x)u(t), (1)

where x ∈ Rn is the state vector and u(t) ∈ Rm the

control input; a(x) ∈ Rn and Bu(x) ∈ Rn×m are nonlinear

state-dependent functions. The following assumptions are

considered

1) The matrix Bu(x) is column-rank deficient:

Rank(Bu(x)) = k < m, ∀x;

2) The input signal u(t) lies into a compact set Ω, i.e.

u(t) ∈ Ω :=
{
u ∈ Rm |u− ≤ u ≤ u+

}
, (2)

where u− := [u−
1 , u−

2 , . . . , u−
m]T ∈ Rm and u+ :=

[u+
1 , u+

2 , . . . , u+
m]T ∈ Rm.

The assumption 1) (rank deficiency) allows one to define an

equivalent representation of the plant (1)

x(t + 1) = a(x) + Bv(x) v(t), (3)

Bv(x) v(t) = Bu(x)u(t), (4)

where Bv(x) ∈ Rn×k is a full column-rank matrix such

that its columns are a basis for the subspace defined by the

columns of Bu(x) and v(x) ∈ Rk is the virtual control input.
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Hereafter, the system (3) will be referred to as the virtual

plant while the equation (4) as the parity equation of the

system, which defines the analytical relationships between

the virtual and physical inputs. Note that in such a scheme,

the virtual control input v(t) represents the desired total

control effort that we want to apply to the plant. In the sequel,

we will assume that such a signal v(t) is provided at each

time instant by the control law. On the basis of the overall

system description (3)-(4) under the actuator constraints (2),

the following problem can be stated:

Control allocation problem (CAP) - Given a virtual input

v(t) ∈ Rk compute a command input u(t) ∈ Rm such that

(2) and (4) are satisfied. 2

Such a problem has been extensively studied in recent

years and several numerical procedures for its solution have

been proposed ([13]-[2]). Note that:

• Many previous works on the topic re-arrange the equa-

tion (4) as follows

v(t) = B(x)u(t)
Bu(x) = Bv(x)B(x)

(5)

where B(x) ∈ Rk×m is a factorization of Bu(x)

B(x) =
(
BT

v (x)Bv(x)
)−1

BT
v (x)Bu(x). (6)

• CAP could not admit any solution due to the actuators

saturation constraints (2). In such a case, CAP can be

relaxed by requiring to compute a command u(t) such

that Bu(x)u(t) is somehow close to Bv(x)v(t) (e.g. by

evaluating at each time instant the numerical value of

‖Bu(x)u(t) − Bv(x)v(t)‖);
• The analytical redundancy, i.e. Rank(Bu(x)) = k <

m, implies that in principle there exists a set of admis-

sible commands u which are solutions for CAP. This

fact can be exploited to comply with other specifications

besides the CAP requirements.

A common way to solve CAP at each time t is that of

minimizing the quadratic optimization problem

u(t) , arg min
s,u

‖s‖2
Qs

+ ‖u‖2
Ru

,

Bv(x(t))v(t) = Bu(x(t))u + s,
u ∈ Ω.

(7)

where Qs = Q′
s > 0 and Ru = R′

u ≥ 0 are consistent

weighting matrices. The slack-variable s is used to enlarge

the set of solutions in the parity equation (4) and it allows

the achievement of approximate allocations. When zero, a

perfect allocation is achieved. On the contrary, the penalty

on u is optional and it is used to minimize the actuator efforts

when many solutions are possible.

It is well-known that an explicit solution to this optimiza-

tion problem can be found in the unconstrained case while

it does not exist in the general case. However, in order to

reduce computational burdens, several efficient algorithms

based on the semi-explicit solution have been proposed in

the last years (see [11]-[13]). For the purposes of this paper,

it is important to notice here that computational efficiency

obtained through explicit approaches is paid in terms of a

reduction of flexibility w.r.t. reconfiguration issues (see [11]).

B. Fault Modeling

Here we desire to take into account possible actuator

faults. Therefore we suppose that the plant dynamics is

corrupted by unpredictable events which alter the nominal

behavior of the system. The aim is to make use of the input

analytical redundancy to reconfigure the actuator allocation

in such a way that the fault become ineffective.

In this paper we will focus only on the class of faults

describing effectiveness variations of the actuators. The effect

of a fault event is then to change in percentage the nominal

gain of some actuator signal. Such a kind of fault can be

naturally formalized in a multiplicative fashion

x(t + 1) = a(x) + Bu(x)∆(t)u(t), (8)

where ∆(t) = diag {δ1(t), δ2(t), . . . , δm(t)} is the so-

called Effectiveness Matrix and δi(t) ∈ R, i = 1, ...,m are

piecewise constant sequences representing the effectiveness

of any single actuator. Notice that, in the absence of fault

occurrences, ∆(t) = I . Moreover, the parity equation (4)

becomes

Bv(x) v(t) = Bu(x)∆(t)u(t). (9)

Then, the problem we want to solve can be stated as follows

F - Tolerant Control Allocation Problem (F-TCAP) -

Given the virtual plant (8) and a virtual input v(t) ∈ Rk, find

a command input u(t) ∈ Rm such that (2) and (9) hold true.

III. TWO-STEP PROCEDURE

It may simply be observed that the knowledge of the

Effectiveness Matrix ∆(t) makes F-TCAP be reduced to a

more simple CAP. This allows us to propose the following

adaptive two-step method to solve F-TCAP at each time

t:

Step 1: Compute the diagonal matrix ∆̂(t), the best

estimate of ∆(t) at time t, based on records of N past

system measures.

Step 2: Solve the CAP defined by (2) and (9) by assuming

(certainty equivalence hypothesis) ∆(t) = ∆̂(t),

There is an huge literature both on online parameter

estimation and allocation problems. Many of the existing

algorithms solving the two problems can be arranged in this

general scheme.

A. A simple two-step algorithm

Hereafter, a very simple two-step algorithm is proposed

by using quadratic programming arguments.

Step 1: - Estimate of ∆̂(t)
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In order to estimate the Effectiveness Matrix it is conve-

nient to rewrite things in terms of the incremental matrix

Γ̂(t) , ∆̂(t) − ∆̂(t − 1) (10)

defined as the diagonal matrix

Γ̂ , diag{γ̂1, γ̂2, . . . , γ̂m} ∈ Rm

of loss-of-effectiveness actuator increments γ̂i(t) = δ̂i(t) −
δ̂i(t − 1), i = 1, ...m.

We are especially interested in algorithms able to detect

constant or slow-varying actuator faults or loss of effective-

ness, that is in determining matrices ∆̂(t) that ”matches

as much as possible” the measured signals of the plant in

the last N time instants, with N arbitrarily chosen. This

corresponds to solutions which minimize the entries of Γ̂.

A workable strategy corresponds to the solution of the

following weighted least-squares problem

Γ̂(t) , arg min
si,Γ

N∑
i=1

‖si‖
2
Qi

+ ‖vect(Γ)‖2
R

x(t − i + 1) − a(x(t − i))

−Bu(x(t − i))
[
Γ + ∆̂(t − 1)

]
u(t − i) = si, i = 1, . . . , N

(11)

with Qi >> R, i = 1, . . . , N , where vect(Γ) =
[γ1, γ2, . . . , γm]T ∈ Rm and si ∈ Rn, i = 1, . . . , N
are slack vectors and R = R′ > 0 and Qi = Q′

i > 0, i =
1, . . . , N consistent weighting matrices. The choice of N

has an important role in such a computation: picking a small

value of N means having less or no information and in turn

bad parameters estimation results. On the contrary, a large

value of N yields to long computation and reconfiguration

times. A reasonable choice is m/n ≤ N ≤ 2m.

Step 2: - Given Γ̂(t), compute ∆̂(t) = ∆̂(t− 1) + Γ̂(t) and

solve the following CAP

u(t) , arg min
s,u

‖s‖2
Qs

+ ‖u‖2
Ru

Bv(x(t))v(t) = Bu(x(t))∆̂(t)u + s
u ∈ Ω

(12)

where s ∈ Rn is the parity slack vector and Qs = Q′
s > 0

and Ru = R′
u ≥ 0 consistent weighting matrices. In order

to force slack vector to be as small as possible usually

Qs >> Ru is chosen.

Remark 1 - An analytical expression to approximately

solve (11) for Qi >> R can be easily determined via

pseudoinverse arguments. This would be beneficial for

maintaining the on-line numerical burden of the algorithm

low. See [17] for more details.

B. Properties of the two-step algorithm

In this section we will investigate the properties of the

proposed algorithm with a particular regard to constant

actuator faults or loss of effectiveness. To this end, the

following fault at time t′

∆(t) = I t < t′, i = 1, . . . ,m
∆(t) = ∆′ t ≥ t′, i = 1, . . . ,m

(13)

is assumed where ∆′ = diag{δ′1, . . . δ′m} is the constant di-

agonal matrix corresponding to the true loss of effectiveness.

In particular, we are interested to study the asymptotical

properties of the R-weighted estimation error

eR(t) = ||vect(∆̂(t) − ∆′)||R (14)

and the conditions for its convergence to zero. It is reasonable

in fact to argue that, as many other parameter estimators, the

convergence of the proposed one strongly depends on the

nature of the input signals. Such a dependence, especially in

a closed loop embedding, can yield to partially uncorrected

estimations.

The following result on the monotonicity of the estimation

error can be stated.

Proposition 1 - Given the overactuated physical plant (8)

and the corresponding virtual plant (3)-(9), let the algorithm

(11) perform under (13). Then, the weighted estimation

error eR(t) = ||vect(∆̂(t) − ∆′)||R is a monotonically non-

increasing sequence, i.e. eR(t + 1) ≤ eR(t),∀t > t′ + N .

Proof - See [17]. 2

Finally, by Proposition 1 and exploiting some arguments of

its proof, under a constant fault it is possible to conclude that:

Main results

1 - As it was expected, in the general case the algorithm

does not ensure that eR(t) converges to zero. In fact,

the convergence strictly depends on the nature of the

u(t) history;

2 - Because e(t) is monotonically non-increasing, if ∃t∗ >
t′ + N such that eR(t∗) = 0 then eR(t) = 0, ∀t ≥ t∗;

3 - A sufficient condition for e(t) to have zero value at

some finite time t∗ > t′ + N is that rank{(M(t∗)} =
m, where

M(t) =
 Bu(x(t−1))diag{u1(t−1),...,um(t−1)}

...

Bu(x(t−N))diag{u1(t−N),...,um(t−N)}


 (15)

Proof - See [17]. 2

It is worth pointing out that the proposed two-step algo-

rithm to the F-TCAP does not guarantee the convergence

of the estimation error to zero in general because of possible

rank deficiency of the M(t) matrix. A popular way to

move around this obstacle is by the introduction of artificial

disturbances able to force the input signals to persistently

exciting the system. Those disturbances obviously cause

unwanted side effects on the system behavior. In order to

avoid them, more clever policies have been here implemented

but, for space limitation, they are not discussed here.

IV. NUMERICAL EXAMPLES

A. Linear unstable model

Consider the following linear model

x(t + 1) = Ax(t) + Bu∆(t)u(t) (16)
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where x ∈ R3 is the state vector and u = [u1, u2, u3] the

physical input vector subject to the constraints −5 < ui <
5 i = 1, ..., 3. Matrices A and Bu are

A = 1.2, Bu =
(

1 1 1
)
, (17)

and ∆(t) is assumed as

∆(t) = diag{1, 1, 1} t < 50
∆(t) = diag{1, 1, 0} 50 ≤ t < 225
∆(t) = diag{1, 0.5, 0} t ≥ 225.

(18)

consisting of a sequence of two faults. The first occurring

at time t = 50, when the effectiveness of the third actuator

becomes zero. This is followed, at time t = 225, by a 50%
reduction of the effectiveness of the second actuator.

The virtual input matrix Bv = 1 and the virtual control law

K = −0.6 have been chosen. A version of the (F-TCAP)

strategy that ensures full rank for M(t) was used [17] with

parameters: ǫthr = 10−5, Q = Qi = 105, i = 1, .., 3, and

R = Ru = I3×3.

Simulation results on plant evolutions, actuators’ alloca-

tion and control reconfiguration are reported in next figures

for a tracking problem from an initial state x(0) = 0 and a

square wave reference signal.

In order to show the the effectiveness of the adaptive

strategy, two sets of simulations have been accomplished:

with and without the use of the adaptive (F-TCAP) strategy.

When (F-TCAP) is not used, a non-adaptive CAP problem

is solved at each time instant without the updating of the

effectiveness matrix.

Figs. 2-4 report respectively the output, the physical and

virtual input closed-loop evolutions achieved with (UP) or

without (BOTTOM) the use of the (F-TCAP) strategy. In

particular, in Fig. 2 it is easy to note the effectiveness of F-

TCAP in reconfiguring the allocation rules after a fault oc-

currence. Correspondingly, Figs. 3 and 4 report the physical

and virtual input evolutions. It is worth noticing how signals

related to failed actuators smartly change, coherently with the

new estimated actuators effectiveness. On the contrary, under

the non-adaptive CAP allocation, all input signals change

uniformly and the tracking performance is lost. This behavior

can be better explained in Fig. 4, where the virtual inputs v
are shown in both cases. In the (UP) part is possible in fact to

observe how, unlike in the (BOTTOM) part, the control law

behavior is not influenced by the faulty events, apart around

the time instants of fault occurrences, and the steady-state

values of the control action remain unchanged.

Finally, in Fig. 5 , (UP) the estimation error eR(t) =
||V ect(∆̂(t) − ∆(t))||R and (BOTTOM) the difference be-

tween the desired total control effort and the actual one,

i.e. Bu∆(t)u(t)−Bvv(t) are reported, both achieved under

the proposed F-TCAP algorithm. Those are two impor-

tant indexes to evaluate the estimation and reconfiguration

performances, the lower the better (at zero one has exact

estimation and allocation). Notice, in particular, their finite-

time convergence to zero.

0 50 100 150 200 250 300 350 400
0

0.5

1

1.5

2

2.5

3

x
1
(t

)

State x
1
 Using F TCAP

Time (Steps)

x
1

Ref

0 50 100 150 200 250 300 350 400
0

0.5

1

1.5

2

2.5

3

State x
1
 Using CAP

x
1
(t

)

Time (Steps)

x
1

Ref

Fig. 2. Output and reference with (UP) and without (BOTTOM) F -TCAP.
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Fig. 6. A schematic of a 4WS4WD vehicle

B. Handling tire/surface loss of effectiveness in 4WS4WD

cars

We consider the quasi-static model of a autonomous four-

wheeled steering and four-wheeled driving (4WS4WD) vehi-

cle presented in [19]. These vehicles are recognized to pos-

sess a highly integrated structure and actuator redundancy.

They enjoy the advantage of 4WS vehicles in the superior

performance of lateral dynamics and the benefits of the 4WD

structure, allowing differential and driving wheel torques

to be delivered at the same time for enhancing cornering

performance and retaining cruising speed.

Each wheel (i = 1, 2, 3, 4) in Fig.6 can be independently

steered by an angle δi and is provided by a driving/braking

torque Ti by the propulsion system. Other important vari-

ables are the speed of the center of gravity (CG) V , its

modulus v = ||V ||, the sideslip angle β, the yaw angle φ
and the yaw rate γ.

The goal is to distribute the total control effort, given

in terms on the total x, y forces Fx and Fy and yaw

momentum M at the CG, amongst the wheel driving torques

and steering angles on the basis of estimated ground/wheel

contact effectiveness. Under small sideslip angles β ≈ 0, the

following quasi-static dynamic model results
 m 0 0

0 mv 0
0 0 JZ


 d

dt


 v

β
γ


 = −


 0

mvγ
0




+

4∑
j=1


 fxj

fyj

Mzj



(19)

with

4∑
j=1

Mzj =
[
−ld lf

]
F1 +

[
ld lf

]
F2 +

[
−ld −lf

]
F3

+
[
ld −lf

]
F4 (20)

Fj =
[

fxj fyj

]T

=

[
Tj/rj fzjkj

(
−β −

lfγ

v
+ δj

)]
, j = 1, 2

(21)

Fj =
[

fxj fyj

]T

=

[
Tj/rj fzjkj

(
−β +

lrγ

v
+ δj

)]
, j = 3, 4

(22)

In (19)-(22), fxj and fyj are the wheel/surfance contact

forces w.r.t. the X-Y body-fixed frame, Tj and δj the physical

actuator signals, kj the wheel/surface contact effectiveness

(time-varying) and rj and fzj respectively the j-th effective

wheel radius and the car weight acting on that wheel. The

above quasi-static models will be used by the adaptive

allocation algorithm to estimate the parameters ki and to

distribute the three virtual commands Fx, Fy and M into

the physical eight signals Ti and δi.

The following loss of effectiveness scenario is con-

sidered for the effectiveness parameter vector K(t) =
[k1, k2, k3, k4]

T :

[5.5 5.5 5.5 5.5] t < 0.6 s, dry asphalt on all wheels

[4.5 5.5 4.5 5.5] 0.6 s ≤ t < 1.5 s, dry asphalt on

one side and puddles on the other side

[3.5 3.5 3.5 3.5] t ≥ 1.5 s, wet asphalt on all wheels

In Fig. 7, the continuous line depicts the prescribed

trajectory whereas the dash-dotted and dashed lines represent

the achieved trajectory respectively under the proposed adap-

tive F-TCAP and the non-adaptive CAP strategies. Similar

results are achieved for the other signals of interest depicted

in next Fig. 8. It is worth commenting that no feedback loop

is closed in these simulations to better show the ability of

the allocation algorithm to reconfigure the control allocation

rules. Nevertheless, in all above figures the reference curves

and the ones achieved under F-TCAP strategy are fully

superimposed whereas large deviations occur under CAP.

Finally, in Fig. 9 the estimated effectiveness ki for the

considered scenario are depicted. Also in this example,
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the estimates are quite accurate and a fast convergence is

achieved.

V. CONCLUSIONS

A preliminary adaptive scheme to perform fault tolerant

control allocation for nonlinear discrete-time system has been

here proposed for disturbance free plants subject to loss of

effectiveness. A workable algorithm has been proposed and

its properties have been investigated. The effectiveness of the

proposed method has been shown by means of two numerical

examples.
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